ما هو المنتج المتقاطع لـ [9،4، -1] و [2، 5، 4]؟

ما هو المنتج المتقاطع لـ [9،4، -1] و [2، 5، 4]؟
Anonim

المنتج المتقاطع لمتجهين ثلاثي الأبعاد هو متجه ثلاثي الأبعاد آخر متعامد لكليهما.

يتم تعريف المنتج المتقاطع على أنه:

#color (أخضر) (vecuxxvecv = << u_2v_3 - u_3v_2، u_3v_1 - u_1v_3، u_1v_2 - u_2v_1 >>) #

من الأسهل تذكرها إذا تذكرنا أنها تبدأ #2,3 - 3,2#، وهو دوري و antisymmetric.

  • انها دورات كما #2,3# #-># #3,1# #-># #1,2#
  • إنه غير متماثل لأنه يذهب: #2,3# // #3,2# #-># #3,1# // #1,3# #-># #1,2# // #2,1#، ولكن يطرح كل زوج من المنتجات.

لذا دع:

#vecu = << 9 ، 4 ، -1 >> #

#vecv = << 2 ، 5 ، 4 >> #

# # vecuxxvecv

# = << (4xx4) - (-1xx5) ، (-1xx2) - (9xx4) ، (9xx5) - (4xx2) >> #

#= << 16 - (-5), -2 - 36, 45 - 8 >>#

# = اللون (الأزرق) (<< 21 ، -38 ، 37 >>) #