إجابة:
تفسير:
منذ
وهكذا ، تتضاعف من خلال
تبين أن cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. أنا مرتبك بعض الشيء إذا جعلت Cos²4π / 10 = cos² (π-6π / 10) و cos²9π / 10 = cos² (π-π / 10) ، فسوف يتحول إلى قيمة سالبة مثل cos (180 ° -theta) = - costheta في الربع الثاني. كيف يمكنني إثبات السؤال؟
من فضلك، انظر بالأسفل. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
كيف يمكنك تبسيط f (theta) = cos ^ 2theta-sin ^ 2theta-cos2theta؟
F (theta) = 0 rarrf (theta) = cos ^ 2theta-sin ^ 2theta-cos2theta = cos2theta-cos2theta = 0
تبسيط (- أنا sqrt 3) ^ 2. كيف يمكنك تبسيط هذا؟
-3 يمكننا كتابة الوظيفة الأصلية في شكلها الموسع كما هو موضح (-isqrt (3)) (- isqrt (3)) تعاملنا مع متغير ، ومنذ الأزمنة السالبة يساوي سالبة موجب ، وجذر مربع في الأوقات التي يكون فيها الجذر التربيعي لنفس الرقم هو ذلك الرقم ، نحصل على المعادلة أدناه i ^ 2 * 3 تذكر أن i = sqrt (-1) والتشغيل مع قاعدة الجذر التربيعي الموضح أعلاه ، يمكننا التبسيط كما هو موضح أدناه -1 * 3 إنها الآن مسألة حسابية -3 وهناك إجابتك :)