ما رقمين تتضاعف إلى 90 وتضاف إلى -5؟

ما رقمين تتضاعف إلى 90 وتضاف إلى -5؟
Anonim

إجابة:

لا توجد أرقام حقيقية

تفسير:

نحن نعرف ذلك # أ ب = 90 # و # أ + ب = -5 #

يمكننا عزل سواء #ا# أو #ب# والبديل.

# ل= -5-ب #

# B (-5-ب) = 90 #

# -b ^ 2-5b = 90 #

# ب ^ 2 + 5B + 90 = 0 #

# B = (- 1 + -sqrt (5 ^ 2-4 (90))) / 2 = (- 1 + -sqrt (25-360)) / 2 = (- 1 + -sqrt (-335)) / 2 = "لا جذور حقيقية" #

لذلك لا توجد أرقام حيث # أ ب = 90 # و # أ + ب = -5 #

دليل أكثر (الخطوط لا تتقاطع):

الرسم البياني {(xy-90) (x + y + 5) = 0 -107.6 ، 107.6 ، -53.8 ، 53.8}

إجابة:

هذا السؤال خاطئ!

تفسير:

#color (أزرق) ("مشكلة السؤال") #

المنتج إيجابي لذا فإن القيمتين هما نفس العلامة.

المجموع سالب وبالتالي فإن القيمتين المتماثلتين يجب أن تكون سالبة أيض ا.

إذا أضفوا إلى -5 فسيكونون أقرب إلى 0 من -5.

وبالتالي فإن المنتج سيكون أقل من +90

إجابة:

لا توجد مثل هذه العوامل.

تفسير:

قد تكون تريد عاملين من #90# التي تختلف من قبل #5#?

لا توجد مثل هذه العوامل.

النظر في أزواج عامل.

# 1xx90 "" # تختلف من #89#

# 2xx45 "" # تختلف من #43#

# 3xx30 "" # تختلف من #27#

# 5xx18 "" # تختلف من #13#

# 6xx15 "" # تختلف من #9#

# 9xx10 "" # تختلف من #1#