إجابة:
شكل قمة الرأس لهذه المعادلة هو
تفسير:
هناك العديد من الطرق للقيام بهذه المشكلة. يقوم معظم الأشخاص بتوسيع هذا النموذج المقسم إلى شكل قياسي ثم إكمال المربع لتحويل النموذج القياسي إلى نموذج الرأس. هذا سوف يعمل ، ولكن هناك طريقة لتحويل هذا مباشرة إلى نموذج قمة الرأس. هذا ما سأظهره هنا.
معادلة في شكل عوامل
له جذور في
هنا،
ال
شكل الرأس العام للقطع المكافئ ذي الرأس في
هنا،
يمكننا أن نرى أننا نحصل على نفس الإجابة إذا قطعنا شوط ا طويلا من خلال توسيع المربع ثم إكماله.
لنفترض أن القطع المكافئ لديه قمة (4،7) ويمر أيض ا عبر النقطة (-3،8). ما هي معادلة المكافئ في شكل قمة الرأس؟
في الواقع ، هناك نوعان من القطع المكافئة (من شكل قمة الرأس) التي تلبي مواصفاتك: y = 1/49 (x- 4) ^ 2 + 7 و x = -7 (y-7) ^ 2 + 4 هناك نوعان من أشكال قمة الرأس: y = a (x- h) ^ 2 + k و x = a (yk) ^ 2 + h حيث (h، k) هي قمة الرأس ويمكن العثور على قيمة "a" باستخدام نقطة أخرى. لم نعط أي سبب لاستبعاد أحد النماذج ، وبالتالي فإننا نستبدل الرأس المعطى في كليهما: y = a (x- 4) ^ 2 + 7 و x = a (y-7) ^ 2 + 4 حل لكلتا القيمتين باستخدام النقطة (-3،8): 8 = a_1 (-3- 4) ^ 2 + 7 و -3 = a_2 (8-7) ^ 2 + 4 1 = a_1 (-7) ^ 2 و - 7 = a_2 (1) ^ 2 a_1 = 1/49 و a_2 = -7 فيما يلي المعادلتان: y = 1/49 (x- 4) ^ 2 + 7 و x = -7 (y-7) ^ 2 +4 فيما يل
باستخدام نموذج الرأس ، كيف يمكنك حل المتغير أ ، مع النقاط (3،1) قمة الرأس و (5،9)؟
تعتمد الإجابة على ما تنويه المتغير a إذا كانت قمة الرأس (hatx، haty) = (3،1) ونقطة أخرى على القطع المكافئ (x، y) = (5،9) ثم يمكن أن يكون شكل vertex اللون المكتوب (أبيض) ("XXXXX") y = m (x-hatx) ^ 2 + haty والتي ، (x ، y) مضبوطة على (5،9) ، تصبح لون (أبيض) ("XXXXX") 9 = m (5-3) ^ 2 + 1 8 = 2m m = 4) وشكل الرأس هو y = 4 (x-3) ^ 2 + 1 الخيار 1: (خيار أقل احتمالا ، لكن ممكن) يكون نموذج الرأس في بعض الأحيان مكتوب باللون (أبيض) ("XXXXX") y = m (xa) ^ 2 + b وفي هذه الحالة يكون اللون (أبيض) ("XXXXX") a = 3 الخيار 2: عادة ما يتم كتابة النموذج القياسي المعمم لمقطع القطع المكافئ اللون (أبيض) (&
ما هو شكل قمة الرأس من القطع المكافئ المعطى قمة الرأس (41،71) والأصفار (0،0) (82،0)؟
سيكون النموذج vertex هو -71/1681 (x-41) ^ 2 + 71 يتم تقديم المعادلة الخاصة بنموذج vertex بواسطة: f (x) = a (xh) ^ 2 + k ، حيث يقع الرأس عند النقطة (h ، ك) لذا ، باستبدال الرأس (41،71) عند (0،0) ، نحصل على ، f (x) = a (xh) ^ 2 + k 0 = a (0-41) ^ 2 + 71 0 = a (-41) ^ 2 + 71 0 = 1681a + 71 a = -71/1681 لذا فإن نموذج الرأس يكون f (x) = -71/1681 (x-41) ^ 2 + 71.