إجابة:
انظر عملية الحل بأكملها أدناه:
تفسير:
لأن لدينا منحدر
في هذه الحالة الثابت هو
لذلك المعادلة هي:
شكل تقاطع الميل لمعادلة خطية هو:
أين
حتى نتمكن من كتابة هذا على النحو التالي:
يمر الرسم البياني للخط l في المستوي xy بالنقطتين (2،5) و (4،11). يحتوي الرسم البياني للخط m على ميل -2 وتقاطع x مع 2. إذا كانت النقطة (x ، y) هي نقطة تقاطع الخطين l و m ، فما قيمة y؟
Y = 2 الخطوة 1: حدد معادلة الخط l لدينا بواسطة صيغة الميل m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 الآن بواسطة شكل ميل نقطة المعادلة هي y - y_1 = m (x - x_1) y -11 = 3 (x-4) y = 3x - 12 + 11 y = 3x - 1 الخطوة 2: تحديد معادلة السطر m سيتم التقاطع x دائم ا يكون y = 0. لذلك ، النقطة المحددة هي (2 ، 0). مع المنحدر ، لدينا المعادلة التالية. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 الخطوة 3: اكتب وحل نظام المعادلات نريد إيجاد حل النظام {(y = 3x - 1) ، (y = -2x + 4):} عن طريق الاستبدال: 3x - 1 = -2x + 4 5x = 5 x = 1 هذا يعني أن y = 3 (1) - 1 = 2. نأمل أن يساعد ذلك!
ما هي المعادلة في شكل نقطة الميل وشكل تقاطع الميل للخط الذي يحتوي على النقطة (4 ، 6) والموازى للخط y = 1 / 4x + 4؟
السطر y1 = x / 4 + 4 يحتوي السطر 2 الموازي للخط y1 على ميل: 1/4 y2 = x / 4 + b. أوجد b من خلال كتابة السطر 2 الذي يمر عند النقطة (4 ، 6). 6 = 4/4 + b -> b = 6 - 1 = 5. السطر y2 = x / 4 + 5
ما هي معادلة تقاطع الميل للخط الذي يحتوي على ميل 3 وتقاطع ص 7؟
انظر عملية حل أدناه: نموذج تقاطع الميل لمعادلة خطية هو: y = اللون (الأحمر) (m) x + اللون (الأزرق) (ب) حيث يكون اللون (الأحمر) (m) هو الميل واللون (الأزرق) ) (ب) هي قيمة تقاطع y. الاستبدال يعطي: y = اللون (الأحمر) (3) x + اللون (الأزرق) (7)