إجابة:
تفسير:
ينبثق ثابت من 4 (kg) / s ^ 2 على الأرض مع نهاية واحدة متصلة بجدار. يصطدم جسم بوزن 2 كجم وسرعة 3 م / ث ويضغط الربيع حتى يتوقف عن الحركة. كم سوف ضغط الربيع؟
سوف الربيع ضغط 1.5M. يمكنك حساب ذلك باستخدام قانون Hooke: F = -kx F هي القوة التي تمارس في الربيع ، k هي ثابت الربيع و x هي المسافة التي يضغط عليها الربيع. أنت تحاول أن تجد x. تحتاج إلى معرفة k (لديك هذا بالفعل) ، و F. يمكنك حساب F باستخدام F = ma ، حيث m كتلة و a تسارع. لقد أعطيت كتلة ، ولكن تحتاج إلى معرفة التسارع. للعثور على التسارع (أو التباطؤ ، في هذه الحالة) بالمعلومات التي لديك ، استخدم هذا الترتيب المريح لقوانين الحركة: v ^ 2 = u ^ 2 + 2as حيث v هي السرعة النهائية ، u هي السرعة الأولية ، a هو التسارع و s هي المسافة المقطوعة. s هنا هو نفس x (المسافة التي يضغط عليها الزنبرك = المسافة التي يسافر بها الكائن قبل التوقف)
ينبثق ثابت من 5 (kg) / s ^ 2 على الأرض مع نهاية واحدة متصلة بجدار. جسم بوزن 6 كجم وسرعة 12 م / ث يصطدم مع الربيع ويضغط عليه حتى يتوقف عن الحركة. كم سوف ضغط الربيع؟
12m يمكننا استخدام الحفاظ على الطاقة. في البداية؛ الطاقة الحركية للكتلة: 1 / 2mv ^ 2 = 1/2 * 6 * 12 ^ 2 J أخير ا: الطاقة الحركية للكتلة: 0 الطاقة الكامنة: 1 / 2kx ^ 2 = 1/2 * (5 (kg) / s ^ 2) x ^ 2 equating ، حصلنا على: 1/2 * 6 * 12 ^ 2 J = 1/2 * (5 (kg) / s ^ 2) x ^ 2 => x ~~ 12m * سأكون سعيدة للغاية إذا كان ك و م هي نفسها.
ينبثق ثابت من 12 (كجم) / ثانية ^ 2 على الأرض مع نهاية واحدة متصلة بجدار. جسم بوزن 8 كجم وسرعة 3 م / ث يصطدم مع الربيع ويضغط عليه حتى يتوقف عن الحركة. كم سوف ضغط الربيع؟
Sqrt6m النظر في الظروف inital والنهائي للكائنين (وهما ، الربيع والكتلة): في البداية: الربيع في الكذب في الراحة ، والطاقة الكامنة = 0 الكتلة تتحرك ، والطاقة الحركية = 1 / 2mv ^ 2 وأخيرا : يتم ضغط الربيع ، الطاقة الكامنة = 1 / 2kx ^ 2 توقفت الكتلة ، الطاقة الحركية = 0 باستخدام الحفاظ على الطاقة (إذا لم تتبدد الطاقة في المناطق المحيطة) ، لدينا: 0 + 1 / 2mv ^ 2 = 1 / 2kx ^ 2 + 0 = > ألغ (1/2) mv ^ 2 = ألغ (1/2) kx ^ 2 => x ^ 2 = (m / k) v ^ 2:. x = sqrt (m / k) v = sqrt ((8kg) / (12kgs ^ -2)) xx3ms ^ -1 = sqrt (6) m