إجابة:
تفسير:
أولا ، لنبسط هذا الأمر بحيث يكون لدينا جزء واحد يمكننا أن نتحمله.
#f (x) = (x (x)) / ((x-1) (x)) - ((x-1) (x-1)) / (x (x-1)) #
#f (x) = (x ^ 2 - (x-1) ^ 2) / ((x-1) (x)) = (x ^ 2 - (x ^ 2 - 2x + 1)) / ((x -1) (س)) #
#f (x) = (2x-1) / ((x-1) (x)) #
الآن ، نحن بحاجة إلى التحقق من عدم الاستمرارية. هذا مجرد شيء سيجعل قاسم هذا الكسر
#lim_ (x-> 0) (2x-1) / (x (x-1)) = (-1) / (- 1 * 0) = + -oo #
#lim_ (x-> 1) (2x-1) / (x (x-1)) = 3 / (1 * 0) = + -oo #
لأن كلا من هذه الحدود تميل نحو اللانهاية ، كلاهما
ما هي الخطوط المقربة (الثقوب) والفتحة (الثقوب) ، إن وجدت ، من f (x) = (1 + 1 / x) / (1 / x)؟
هو ثقب في س = 0. f (x) = (1 + 1 / x) / (1 / x) = x + 1 هذه هي وظيفة خطية ذات تدرج 1 وتقاطع ص 1. يتم تعريفها في كل x باستثناء x = 0 لأن القسمة على 0 غير معروف.
ما هي الخطوط المقربة (الثقوب) والفتحة (الثقوب) ، إن وجدت ، من f (x) = 1 / (2-x)؟
إن الخطوط المقاربة لهذه الوظيفة هي x = 2 و y = 0. 1 / (2-x) هي وظيفة عقلانية. هذا يعني أن شكل الوظيفة يشبه هذا: graph {1 / x [-10، 10، -5، 5]} الآن تتبع الدالة 1 / (2-x) نفس بنية الرسم البياني ، لكن مع بعض التعديلات . يتم تحويل الرسم البياني لأول مرة أفقيا إلى اليمين بمقدار 2. يتبع ذلك انعكاس على المحور السيني ، مما يؤدي إلى رسم بياني مثل ذلك: graph {1 / (2-x) [-10، 10، -5، 5 ]} مع وضع هذا الرسم البياني في الاعتبار ، للعثور على الخطوط المقاربة ، كل ما هو ضروري هو البحث عن الخطوط التي لن يلمسها الرسم البياني. وتلك هي س = 2 ، وص = 0.
ما هي الخطوط المقربة (الثقوب) والفتحة (الثقوب) ، إن وجدت ، من f (x) = (1-e ^ -x) / x؟
الخط المقارب الوحيد هو x = 0 بالطبع ، لا يمكن أن تكون x 0 ، وإلا يبقى f (x) غير معروف. وهنا يكمن "الثقب" في الرسم البياني.