إجابة:
محيط الحد الأقصى هو:
تفسير:
عندما يكون من الممكن رسم رسم تخطيطي. يساعد في توضيح ما تتعامل معه.
لاحظ أنني قمت بتسمية الرؤوس كما هو الحال مع الحروف الكبيرة والأطراف ذات الإصدار الصغير من الرسالة للزاوية المقابلة.
إذا قمنا بتعيين قيمة 2 على أصغر طول ، فسيكون مجموع الجوانب هو الحد الأقصى.
باستخدام شرط الجيب
ترتيب هذه مع أصغر قيمة شرط على اليسار
لذلك الجانب
جلس
وبالتالي فإن الحد الأقصى للمحيط هو:
زاويتان من المثلث لهما زاويتان (3 pi) / 4 و pi / 6. إذا كان طول أحد جوانب المثلث 6 ، فما هو أطول محيط ممكن للمثلث؟
أطول محيط ممكن = 33.9854 الزوايا هي (3pi) / 4 ، (pi / 6) ، (pi / 12) طول أصغر جانب = 6: .6 / sin (pi / 12) = b / sin ((3pi) / 4 ) = c / sin (pi / 6) b = (6 * sin ((3pi) / 4)) / sin (pi / 12) b = 4.2426 / 0.2588 = 16.3934 c = (6 * sin (pi / 6)) / sin (pi / 12) c = 3 / 0.2588 = 11.5920 أطول محيط ممكن = 6 + 16.3934 + 11.5920 = 33.9854
زاويتان من المثلث لهما زاويتان (3 pi) / 8 و (pi) / 2. إذا كان طول أحد جوانب المثلث 2 ، فما هو أطول محيط ممكن للمثلث؟
P = 4.8284 + 5.2263 + 2 = اللون (أرجواني) (13.0547) المعطى A = (3pi) / 8 ، B = (pi) / 2 C = pi - (3pi) / 8 - pi / 2 = pi / 8 للحصول على أطول محيط ، يجب أن يتوافق الجانب 2 مع أقل زاوية pi / 8 a / sin ((3pi) / 8) = b / sin (pi / 2) = 2 / sin (pi / 8) a = (2 sin (( 3pi) / 8)) / sin (pi / 8) = 4.8284 b = (2 sin (pi / 2)) / sin (pi / 8) = 5.2263 المحيط الأطول P = a + b + c P = 4.8284 + 5.2263 + 2 = اللون (الأرجواني) (13.0547)
زاويتان من المثلث لهما زاويتان (3 pi) / 8 و (pi) / 2. إذا كان طول أحد جوانب المثلث 4 ، فما هو أطول محيط ممكن للمثلث؟
8 + 4 sqrt2 + 4 sqrt {4 + 2 sqrt2} اسمح لـ Delta ABC ، الزاوية A = {3 pi} / 8 ، الزاوية B = pi / 2 وبالتالي الزاوية C = pi- الزاوية A- الزاوية B = pi- {3 pi} / 8- pi / 2 = { pi} / 8 للحد الأقصى من محيط المثلث ، يجب أن نعتبر أن الجانب المعطى للطول 4 هو الأصغر أي أن الجانب c = 4 هو عكس أصغر زاوية الزاوية C = pi / 8 الآن ، باستخدام قاعدة الجيب في Delta ABC على النحو التالي frac {a} { sin A} = frac {b} { sin B} = frac {c} { sin C} frac {a} { sin ({3 pi} / 8)} = frac {b} { sin ( pi / 2)} = frac {4} { sin ({ pi} / 8)} a = frac {4 sin ({3 pi} / 8)} { sin ( pi / 8)} a = 4 ( sqrt2 + 1) & b = frac {4 sin ({ pi} / 2)