تحقق من secx • cscx + cotx = tanx + 2cosx • cscx؟
RHS = tanx + 2cosx * cscx = sinx / cosx + (2cosx) / sinx = (sin ^ 2x + 2cos ^ 2x) / (sinx * cosx) = (sin ^ 2x + cos ^ 2x + cos ^ 2x) / (sinx * cosx) = (1 + cos ^ 2x) / (sinx * cosx) = 1 / (sinx * cosx) + (cos ^ 2x) / (sinx * cosx) = cscx * secx + cotx = LHS
هل يمكن أن يساعدني أحدهم على إثبات هذه الهوية؟ 1 / (secA-1) + 1 / (secA + 1) = 2cotAcosecA
انظر الدليل أدناه نحن بحاجة إلى 1 + tan ^ 2A = ثانية ^ 2A secA = 1 / cosA cotA = cosA / sinA cscA = 1 / sinA لذلك ، LHS = 1 / (secA + 1) + 1 / (secA-1) = (secA-1 + secA + 1) / ((seca + 1) (secA-1)) = (2secA) / (sec ^ 2A-1) = (2secA) / (tan ^ 2A) = 2secA / (sin ^ 2A / cos ^ 2A) = 2 / cosA * cos ^ 2A / sin ^ 2A = 2 * cosA / sinA * 1 / sinA = 2cotAcscA = RHS QED
كيف يمكنك التحقق من الهوية sec ^ 2 (x / 2) = (2secx + 2) / (secx + 2 + cosx)؟
مطلوب لإثبات: sec ^ 2 (x / 2) = (2secx + 2) / (secx + 2 + cosx) "الجانب الأيمن" = (2secx + 2) / (secx + 2 + cosx) تذكر أن secx = 1 / cosx => (2 * 1 / cosx + 2) / (1 / cosx + 2 + cosx) الآن ، اضرب من أعلى وأسفل بواسطة cosx => (cosx xx (2 * 1 / cosx + 2)) / (cosx xx (1 / cosx + 2 + cosx)) => (2 + 2cosx) / (1 + 2cosx + cos ^ 2x) معاملات القاع ، => (2 (1 + cosx)) / / (1 + cosx) ^ 2 = > 2 / (1 + cosx) أذكر الهوية: cos2x = 2cos ^ 2x-1 => 1 + cos2x = 2cos ^ 2x بشكل مشابه: 1 + cosx = 2cos ^ 2 (x / 2) => "Right Hand Side" = 2 / (2cos ^ 2 (x / 2)) = 1 / cos ^ 2 (x / 2) = اللون (الأزرق) (ثانية