الفصل الدراسي الأول
مجموع سلسلة هندسية تصل إلى
أين
هنا
وبالتالي ، فإن المبلغ هو
المصطلحان الأول والثاني للتسلسل الهندسي هما على التوالي المصطلحين الأول والثالث للتسلسل الخطي. المصطلح الرابع للتسلسل الخطي هو 10 ومجموع المصطلح الأول خمسة هو 60 أوجد المصطلحات الخمسة الأولى للتسلسل الخطي؟
{16 ، 14 ، 12 ، 10 ، 8} يمكن تمثيل تسلسل هندسي نموذجي كـ c_0a و c_0a ^ 2 و cdots و c_0a ^ k وتسلسل حسابي نموذجي مثل c_0a و c_0a + Delta و c_0a + 2Delta و cdots و c_0a + kDelta استدعاء c_0 a كعنصر أول للتسلسل الهندسي لدينا {(c_0 a ^ 2 = c_0a + 2Delta -> "الأول والثاني من GS هما الأول والثالث من LS") ، (c_0a + 3Delta = 10- > "المصطلح الرابع للتسلسل الخطي هو 10") ، (5c_0a + 10Delta = 60 -> "مجموع فترته الخمسة الأولى هو 60"):} حل c_0 ، a ، Delta نحصل عليه c_0 = 64/3 ، a = 3/4 ، Delta = -2 ، والعناصر الخمسة الأولى للتسلسل الحسابي هي {16 ، 14 ، 12 ، 10 ، 8}
مجموع أربع فصول متتالية من التسلسل الهندسي هو 30. إذا كانت قيمة AM في الحد الأول والأخير هي 9. أوجد النسبة الشائعة.
دع الفصل الأول والنسبة الشائعة لـ GP هما a و r على التوالي. بالشرط الأول a + ar + ar ^ 2 + ar ^ 3 = 30 ... (1) بالشرط الثاني a + ar ^ 3 = 2 * 9 .... (2) طرح (2) من (1) ar + ar ^ 2 = 12 .... (3) القسمة (2) على (3) (1 + r ^ 3) / (r + r ^ 2) = 18/12 = 3/2 => ((1+ r) (1-r + r ^ 2)) / (r (1 + r)) = 3/2 => 2-2r + 2r ^ 2 = 3r => 2r ^ 2-5r + 2 = 0 => 2r ^ 2-4r-r + 2 = 0 => 2r (r-2) -1 (r-2) = 0 => (r-2) (2r-1) = 0 لذا r = 2or1 / 2
الحد الأول من التسلسل الهندسي هو 200 ومجموع المصطلحات الأربعة الأولى هو 324.8. كيف تجد النسبة الشائعة؟
مجموع أي تسلسل هندسي هو: s = a (1-r ^ n) / (1-r) s = sum ، a = حد أولي ، r = نسبة مشتركة ، n = رقم المدى ... لقد أعطيت s ، a و n ، هكذا ... 324.8 = 200 (1-r ^ 4) / (1-r) 1.624 = (1-r ^ 4) / (1-r) 1.624-1.624r = 1-r ^ 4 r ^ 4-1.624r + .624 = 0 r- (r ^ 4-1.624r + .624) / (4r ^ 3-1.624) (3r ^ 4-.624) / (4r ^ 3-1.624) .5 ، .388 ، .399 ، .9999999 ، .3999999999999999 ، وبالتالي فإن الحد سيكون 0.4 أو 4/10 ، وبالتالي فإن النسبة الشائعة هي 4/10 تحقق ... s (4) = 200 (1- (4 / 10) ^ 4)) / (1- (4/10)) = 324.8