إجابة:
لا توجد extrema المطلقة ل
هناك extrema المحلية:
ماكس المحلي:
دقيقة المحلية:
نقطة الأنحراف
تفسير:
لا توجد extrema المطلقة ل
يمكن أن تجد extrema المحلية ، إن وجدت.
لايجاد
متى
ثم علينا أن نجد عندما:
وبالتالي:
# F '(س) = 0 #
# F '(س)> 0 #
رسم المؤامرة ، ستجد
رسم بياني {5x ^ 7-7x ^ 5-5 -16.48 ، 19.57 ، -14.02 ، 4}
إجابة:
هذه الوظيفة لا يوجد لديه extrema المطلقة.
تفسير:
وبالتالي فإن الوظيفة غير محدودة في كلا الاتجاهين.
افترض أن عدم المساواة كانت القيمة المطلقة (4 ×) +15> 14 بدلا من القيمة المطلقة (4 ×) + 15> 21. كيف سيتغير الحل؟ شرح.؟
نظر ا لأن دالة القيمة المطلقة ت رجع دائم ا قيمة موجبة ، يتحول الحل من كونها بعض الأرقام الحقيقية (x <-2 ؛ x> 10) إلى كونها جميع الأرقام الحقيقية (x inRR) يبدو أننا بدأنا بـ معادلة القيمة المطلقة (4-x) +15> 21 يمكننا طرح 15 من كلا الجانبين والحصول على: القيمة المطلقة (4 ×) + 15 اللون (الأحمر) (- 15)> 21 اللون (الأحمر) (- 15) القيمة المطلقة (4-س )> 6 عند هذه النقطة يمكننا حل ل x ونرى أننا يمكن أن يكون س <-2 ؛ x> 10 فلننظر الآن إلى القيمة المطلقة (4 ×) +15> 14 ونفعل الشيء نفسه بطرح 15: القيمة المطلقة (4 ×) + 15 لون ا (أحمر) (- 15)> 14 لون ا (أحمر) (- 15) abs (4-x)> -1 لأن علامة الق
نطاق X في التعبير التالي هو. القيمة المطلقة (القيمة المطلقة (س + 1) +1)> = 1؟
الكل x أو {x inRR} لسنا بحاجة لمحاولة إزالة الأشرطة المطلقة لحل هذه المشكلة. لاحظ في || x + 1 | +1 |> = 1 أن قيمة | x + 1 |> = 0 لأي x حقيقية لأن القيمة المطلقة تكون دائم ا إيجابية. لذلك حتى في الحد الأدنى للقيمة 0 || 0 | +1 |> = 1
ما النظرية التي تضمن وجود القيمة القصوى المطلقة والقيمة الدنيا المطلقة للقيمة f؟
بشكل عام ، ليس هناك ما يضمن وجود الحد الأقصى المطلق أو الحد الأدنى لقيمة f. إذا كانت f مستمرة على فاصل مغلق [a، b] (أي: على فاصل مغلق ومحدود) ، فإن نظرية القيمة القصوى تضمن وجود الحد الأقصى المطلق أو الحد الأدنى لقيمة f على الفاصل الزمني [a، b] .