إجابة:
تفسير:
مشتق من
لذلك في حالتنا هو عليه
إجابة:
تفسير:
نحن لدينا،
كيف تثبت (1 + sinx-cosx) / (1 + cosx + sinx) = tan (x / 2)؟
من فضلك، انظر بالأسفل. LHS = (1-cosx + sinx) / (1 + cosx + sinx) = (2sin ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2)) / (2cos ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2) = (2sin (x / 2) [sin (x / 2) + cos (x / 2)]) / (2cos (x / 2) * [ sin (x / 2) + cos (x / 2)]) = tan (x / 2) = RHS
إثبات ذلك: sqrt ((1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx)) = 2 / abs (sinx)؟
إثبات أدناه باستخدام اقتران ونسخة مثلثية من نظرية فيثاغورس. الجزء 1 sqrt ((1-cosx) / (1 + cosx)) اللون (أبيض) ("XXX") = sqrt (1-cosx) / sqrt (1 + cosx) اللون (أبيض) ("XXX") = sqrt ((1-cosx)) / sqrt (1 + cosx) * sqrt (1-cosx) / sqrt (1-cosx) اللون (أبيض) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) الجزء 2 بالمثل sqrt ((1 + cosx) / (1-cosx) اللون (أبيض) ("XXX") = (1 + cosx) / sqrt (1-cos ^ 2x) الجزء 3: الجمع بين المصطلحات sqrt ( (1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx) اللون (أبيض) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) لون (1 + cosx) / sqrt (1-cos ^ 2x) (أبيض) ("
كيف تجد مشتق ((sinx) ^ 2) / (1-cosx)؟
-sinx مشتق حاصل القسمة u / vd (u / v) = (u'v-v'u) / v ^ 2 Let u = (sinx) ^ 2 و v = 1-cosx (d (sinx) ^ 2 ) / dx = 2sin (x) * (dsinx) / dx = 2sinxcosx اللون (أحمر) (u '= 2sinxcosx) (d (1-cos (x))) / dx = 0 - (- sinx) = لون sinx ( red) (v '= sinx) قم بتطبيق الخاصية المشتقة على الحاصل المحدد: (d (((sinx) ^ 2) / (1-cosx))) / dx = ((2sinxcosx) (1-cosx) -sinx ( sinx) ^ 2) / (1-cosx) ^ 2 = ((2sinxcosx) (1-cosx) -sinx (1- (cosx) ^ 2)) / (1-cosx) ^ 2 = ((2sinxcosx) (1 -cosx) -sinx (1-cosx) (1 + cosx)) / (1-cosx) ^ 2 ((1-cosx) [2sinxcosx-sinx (1 + cosx)]) / (1-cosx) ^ 2 Simplify بواسطة 1-cosx هذا يؤدي إلى = (2sinxcosx