إجابة:
انظر عملية الحل أدناه:
تفسير:
الصيغة للعثور على نقطة منتصف مقطع خط تعطي نقطتي النهاية هي:
أين
استبدال القيم من النقاط في المشكلة يعطي:
ما هي إحداثيات نقطة الوسط قطعة مع نقاط النهاية من (7 ، 1) و (-1 ، 5)؟
إحداثيات نقطة الوسط هي (3،3) (x_1 = 7 ، y_1 = 1) و (x_2 = -1 ، y_2 = 5) نقطة الوسط لنقطتين ، (x_1 ، y_1) و (x_2 ، y_2) هي تم العثور على النقطة M بالصيغة التالية: M = (x_1 + x_2) / 2 ، (y_1 + y_2) / 2 أو M = (7-1) / 2 ، (1 + 5) / 2 أو M = 3 ، 3 إحداثيات نقطة المنتصف هي (3،3) [الجواب]
يحتوي مقطع الخط على نقاط نهاية عند (أ ، ب) و (ج ، د). يمتد مقطع الخط بعامل r حول (p، q). ما هي نقاط النهاية الجديدة وطول مقطع الخط؟
(a ، b) إلى ((1-r) p + ra ، (1-r) q + rb) ، (c ، d) إلى ((1-r) p + rc ، (1-r) q + rd) ، طول جديد l = r sqrt {(ac) ^ 2 + (bd) ^ 2}. لدي نظرية ، كل هذه الأسئلة موجودة هنا ، لذا هناك شيء يمكن أن يقوم به المبتدئون. سأفعل الحالة العامة هنا ونرى ما سيحدث. نترجم الطائرة بحيث تقوم نقطة الامتداد P بتعيين الأصل. ثم يوسع الامتداد الإحداثيات بعامل r. ثم نترجم الطائرة مرة أخرى: A '= r (A - P) + P = (1-r) P + r A هذه هي المعادلة المعلمية لخط بين P و A ، مع إعطاء r = 0 P ، r = 1 إعطاء A ، و r = r إعطاء A '، صورة A تحت الامتداد بواسطة r حول P. صورة A (a ، b) تحت الامتداد بواسطة r حول P (P ، q) هي (x ، y) = (1-r) (p، q) + r (a، b)
النقاط (–9 ، 2) و (–5 ، 6) هي نقاط النهاية لقطر الدائرة ما هو طول القطر؟ ما هي النقطة المركزية C للدائرة؟ بالنظر إلى النقطة C التي عثرت عليها في الجزء (ب) ، حدد النقطة المتماثلة للنقطة C حول المحور السيني
D = sqrt (32) = 4sqrt (2) ~~ 5.66 مركز ، C = (-7 ، 4) نقطة متناظرة حول المحور السيني: (-7 ، -4) م عطى: نقاط النهاية لقطر الدائرة: (- 9 ، 2) ، (-5 ، 6) استخدم صيغة المسافة للعثور على طول القطر: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - x_1) ^ 2) d = sqrt ((- 9 - -5) ^ 2 + (2 - 6) ^ 2) = sqrt (16 + 16) = sqrt (32) = sqrt (16) sqrt (2) = 4 sqrt (2) ~~ 5.66 استخدم صيغة نقطة الوسط ل ابحث عن المركز: ((x_1 + x_2) / 2 ، (y_1 + y_1) / 2): C = ((-9 + -5) / 2 ، (2 + 6) / 2) = (-14/2 ، 8/2) = (-7 ، 4) استخدم قاعدة الإحداثيات للتفكير حول المحور السيني (x ، y) -> (x، -y): (-7، 4) نقطة التناظر حول المحور السيني: ( -7 ، -4)