إجابة:
الجذر التربيعي لل
تفسير:
منذ
يمكنك تقريبه باستخدام طريقة نيوتن رافسون.
أود إعادة صياغتها قليلا كما يلي:
سمح
أختر
تكرار باستخدام الصيغ:
#p_ (i + 1) = p_i ^ 2 + n q_i ^ 2 #
#q_ (i + 1) = 2 p_i q_i #
هذا سيعطي تقريب أفضل عقلاني.
وبالتالي:
# p_1 = p_0 ^ 2 + n q_0 ^ 2 = 19 ^ 2 + 89 * 2 ^ 2 = 361 + 356 = 717 #
# q_1 = 2 p_0 q_0 = 2 * 19 * 2 = 76 #
لذلك إذا توقفنا هنا ، فسنحصل على تقدير تقريبي:
#sqrt (89) ~~ 717/76 ~~ 9.434 #
دعنا نذهب خطوة أخرى:
# p_2 = p_1 ^ 2 + n q_1 ^ 2 = 717 ^ 2 + 89 * 76 ^ 2 = 514089 + 514064 = 1028153 #
# q_2 = 2 p_1 q_1 = 2 * 717 * 76 = 108984 #
لذلك حصلنا على تقريب:
#sqrt (89) ~~ 1028153/108984 ~~ 9.43398113 #
هذه الطريقة نيوتن رافسون تتلاقى بسرعة.
في الواقع ، تقريب بسيط جيد نوعا ما ل
#sqrt (89) ~~ 500/53 ~~ 9.43396 #
إذا طبقنا خطوة تكرارية واحدة على هذا ، فسنحصل على تقريب أفضل:
#sqrt (89) ~~ 500001/53000 ~~ 9.4339811321 #
حاشية
جميع الجذور المربعة للأعداد الصحيحة الموجبة لها تكرار توسع الكسور المستمر ، والذي يمكنك استخدامه أيض ا لإعطاء تقديرات تقريبية منطقية.
ومع ذلك ، في حالة
#sqrt (89) = 9 ؛ شريط (2 ، 3 ، 3 ، 2 ، 18) = 9 + 1 / (2 + 1 / (3 + 1 / (3 + 1 / (2 + 1 / (18 + 1 / (2 + 1 / (3 + …))))))) #
التقريب
ما هو [5 (الجذر التربيعي 5) + 3 (الجذر التربيعي 7)] / [4 (الجذر التربيعي 7) - 3 (الجذر التربيعي 5)]؟
(159 + 29 ثانية (35)) / 47 لون ا (أبيض) ("XXXXXXXX") على افتراض أنني لم أرتكب أي أخطاء حسابية (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5)) ترشيد القاسم بضرب المتقارن: = (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5))) xx (4 (sqrt (7)) + 3 (sqrt (5))) / (4 (sqrt (7)) + 3 (sqrt (5))) = (20sqrt (35) + 15 ((الجذر التربيعي (5)) ^ 2) +12 ((الجذر التربيعي (7)) ^ 2) + 9sqrt (35)) / (16 ((الجذر التربيعي (7)) ^ 2) -9 ((الجذر التربيعي (5) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29sqrt (35)) / 47
ما هو (الجذر التربيعي 2) + 2 (الجذر التربيعي 2) + (الجذر التربيعي 8) / (الجذر التربيعي 3)؟
(sqrt (2) + 2sqrt (2) + sqrt8) / sqrt3 sqrt 8 يمكن التعبير عنها باللون (الأحمر) (2sqrt2 يصبح التعبير الآن: (sqrt (2) + 2sqrt (2) + اللون (أحمر) (2sqrt2) ) / sqrt3 = (5sqrt2) / sqrt3 sqrt 2 = 1.414 و sqrt 3 = 1.732 (5 xx 1.414) / 1.732 = 7.07 / 1.732 = 4.08
ما هو الجذر التربيعي لـ 7 + الجذر التربيعي لـ 7 ^ 2 + الجذر التربيعي لـ 7 ^ 3 + الجذر التربيعي لـ 7 ^ 4 + الجذر التربيعي لـ 7 ^ 5؟
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) أول شيء يمكننا القيام به هو إلغاء الجذور على تلك القوى المتساوية. منذ: sqrt (x ^ 2) = x و sqrt (x ^ 4) = x ^ 2 لأي رقم ، يمكننا أن نقول فقط sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) الآن ، يمكن إعادة كتابة 7 ^ 3 كـ 7 ^ 2 * 7 ، وهذا يمكن أن يخرج 7 ^ 2 من الجذر! ينطبق الشيء نفسه على 7 ^ 5 ولكن تمت إعادة كتابته كـ 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 49sqrt (7) الآن نضع الجذر في الدليل ، sqrt (7) + sqrt (7 ^