اجعل جدول الحقيقة للمقترح q [(pΛq) V ~ p]؟

اجعل جدول الحقيقة للمقترح q [(pΛq) V ~ p]؟
Anonim

إجابة:

انظر أدناه.

تفسير:

معطى: #not p -> (p ^^ q) vv ~ p #

عوامل المنطق:# "not p:" not p، ~ p؛ "و:" ^^؛ أو: ت ت #

الجداول المنطقية ، النفي:

#ul (| "" p | "" q | "" ~ p | "" ~ q |) #

# "" T | "" T | "" F | "" F | #

# "" T | "" F | "" F | "" T | #

# "" F | "" T | "" T | "" F | #

# "" F | "" F | "" T | "" T | #

الجداول المنطقية ، و / أو:

#ul (| "" p | "" q | "" p ^^ q "" | "" qvvq "" |) #

# | "" T | "" T | "" T "" | "" T "" | #

# | "" T | "" F | "" F "" | "" T "" | #

# | "" F | "" T | "" F "" | "" T "" | #

# | "" F | "" F | "" F "" | "" F "" | #

الجداول المنطقية ، إذا كان الأمر كذلك:

#ul (| "" p | "" q | "" p-> q "" |) #

# | "" T | "" T | "" T "" | #

# | "" T | "" F | "" F "" | #

# | "" F | "" T | "" T "" | #

# | "" F | "" F | "" T "" | #

مقدمة المنطق المنطقي الجزء 1:

#ul (| "" p ^^ q "" | "" ~ p "" | "" (p ^^ q) vv ~ p |) #

# | "" T "" | "" F "" | "" T "" | #

# | "" F "" | "" F "" | "" F "" | #

# | "" F "" | "" T "" | "" T "" | #

# | "" F "" | "" T "" | "" T "" | #

بالنظر إلى الاقتراح المنطقي ، الجزء 2:

#ul (| "" ~ q "" | "" (p ^^ q) vv ~ p | "" ~ q -> (p ^^ q) vv ~ p |) #

# | "" F "" | "" T "" | "" T "" | #

# | "" T "" | "" F "" | "" F "" | #

# | "" F "" | "" T "" | "" T "" | #

# | "" T "" | "" T "" | "" T "" | #