عن طريق تطبيق
ينص تعريف الحد على أنه كلما اقترب x من عدد ، فإن القيم تقترب من الرقم. في هذه الحالة ، يمكنك التصريح رياضيا بذلك
ومع ذلك ، إذا كان لديك وظيفة مثل
لإثبات هذا ، يمكننا استخدام
توضح هذه المعادلات أنه كلما اقترب x من 1 من يمين المنحنى (
هنا تمثيل رسومي:
رسم بياني {1 / (1-x) -10 ، 10 ، -5 ، 5}
بشكل عام ، عندما يتعلق الأمر بالحدود ، تأكد من مراقبة أي معادلة تحتوي على صفر في المقام (بما في ذلك المعادلات الأخرى مثل
يا للعجب! من المؤكد أنها كثيرة ، ولكن كل التفاصيل مهمة للغاية لملاحظة وظائف أخرى. أتمنى أن يساعدك هذا!
السؤال (1.1): يتم اقتراب ثلاثة أشياء من بعضها البعض ، اثنان في وقت واحد. عندما يتم جمع الكائنات A و B ، فإنها تتصدى. عندما يتم تجميع الكائنات B و C ، فإنها تتصدى أيض ا. ما هو الصواب فيما يلى؟ (أ) الكائنات A و C تمتلك c
إذا افترضت أن الكائنات مصنوعة من مادة موصلة ، فإن الإجابة هي C إذا كانت الكائنات موصلة ، فسيتم توزيع الشحنة بالتساوي في جميع أنحاء الكائن ، سواء أكانت موجبة أم سلبية. لذلك ، إذا صد A و B ، فهذا يعني أن كلاهما إيجابي أو كليهما سالب. ثم ، إذا صد B و C أيض ا ، فهذا يعني أيض ا أنهما إيجابيان أو سالبان. وفق ا للمبدأ الرياضي للنظرية الانتقالية ، إذا كانت A-> B و B-> C ، ثم A-> C ومع ذلك ، إذا لم تصنع الأشياء من مادة موصلة ، فلن يتم توزيع الشحنات بشكل موحد. في هذه الحالة ، سيكون عليك القيام بالمزيد من التجارب.
كيف يمكنك العثور على الحد (sin (x)) / (5x) مع اقتراب x من 0؟
الحد هو 1/5. المحدد lim_ (xto0) sinx / (5x) نحن نعرف أن اللون (الأزرق) (lim_ (xto0) sinx / (x) = 1 حتى نتمكن من إعادة كتابة المعطاة كـ: lim_ (xto0) [sinx / (x) * 1 / 5] 1/5 * lim_ (xto0) [sinx / (x)] 1/5 * 1 1/5
كيف يمكنك العثور على الحد (1 / (h + 2) ^ 2 - 1/4) / h مع اقتراب h من 0؟
نحتاج أولا إلى معالجة التعبير لوضعه في شكل أكثر ملاءمة. دعونا نعمل على التعبير (1 / (h + 2) ^ 2 -1/4) / h = ((4- - (h + 2) ^ 2) / (4 (h + 2) ^ 2)) / h = ((4- (h ^ 2 + 4h + 4)) / (4 (h + 2) ^ 2)) / h = (((4-h ^ 2-4h-4)) / (4 (h + 2) ^ 2)) / h = (- h ^ 2-4h) / (4 (h + 2) ^ 2 h) = (h (-h- 4)) / (4 (h + 2) ^ 2 h) = (-h-4) / (4 (h + 2) ^ 2) أخذ حدود الآن عندما h-> 0 لدينا: lim_ (h-> 0 ) (- h-4) / (4 (h + 2) ^ 2) = (-4) / 16 = -1 / 4