Y = أ (× ح) 2 + ك؟ الحد الأدنى ب. التمييز أو ج. النموذج القياسي لمعادلة من الدرجة الثانية.
هذا هو الشكل القياسي للنماذج المعيارية التربيعية التي تتضمن غالب ا (س - ح) و (ص - ك). ونحن نعلم أن هذا هو من الدرجة الثانية بسبب قوة اثنين.
اضرب: ( 4x + 3) (- 2x ^ 2 - 8x + 2)؟ أ) 8 × 3 - 26 × 2 - 32 × + 6 ب) 8 × 3 + 38 × 2 + 32 × + 6 ج) 8 × 3 + 26 × 2 - 32 × + 6 د) 8 × 3 - 38 × 2 + 16 × + 6
8x ^ 3 + 26x ^ 2-32x + 6 (-4x + 3) (- 2x ^ 2-8x + 2) أولا ، اضرب -4x في كل شيء في كثير الحدود. 8x ^ 3 + 32x ^ 2-8x ثم ، اضرب 3 بكل شيء في كثير الحدود الأخرى -6x ^ 2-24x + 6 ثم ، اجمع 8x ^ 3 + 32x ^ 2-6x ^ 2-8x-24x + 6 8x ^ 3 + 26X ^ 2-32x + 6
أي عبارة تصف المعادلة (x + 5) 2 + 4 (x + 5) + 12 = 0؟ المعادلة من الدرجة الثانية في الشكل لأنه يمكن إعادة كتابتها كمعادلة من الدرجة الثانية باستبدال u = (x + 5). المعادلة من الدرجة الثانية في الشكل لأنه عندما يتم توسيعها ،
كما هو موضح أدناه ، فإن استبدال u سوف يصفها بأنها من الدرجة الثانية في u. بالنسبة إلى التربيعي في x ، سيكون لتوسعة أعلى قوة x إلى 2 ، ويصفها على أنها تربيعية في x.