إجابة:
حلولنا التقريبية هي:
لالعدد الصحيح
تفسير:
هذه هي صعبة للغاية.
لنبدأ بالإعداد
دعونا مربع حتى نكتب كل شيء من حيث
سمح
هذه معادلة مكعبة بثلاثة جذور حقيقية ، مرشحين للجيوب التربيعية لـ
دعنا نعمل بالدرجات. حلولنا التقريبية المحتملة هي:
دعونا نرى ما اذا كان أي من هؤلاء العمل. سمح
بوضوح على الأكثر واحدة من أ
عشرة آخرين للذهاب.
و arcsin يأتي مع
حسن ا ، حلولنا التقريبية هي:
أعتقد أن هذا قد تمت الإجابة عليه من قبل ولكن لا يمكنني العثور عليه. كيف يمكنني الحصول على إجابة في شكلها "غير المميز"؟ كانت هناك تعليقات منشورة على أحد إجاباتي ولكن (ربما نقص القهوة ولكن ...) أستطيع أن أرى فقط الإصدار المميز.
انقر على السؤال عندما تنظر إلى إجابة على / صفحات مميزة ، يمكنك الانتقال إلى صفحة الإجابات العادية ، وهو ما أفترض أن "شكله غير المميز" يعني ، من خلال النقر على السؤال. عند القيام بذلك ، سوف تحصل على صفحة إجابات منتظمة ، والتي سوف تسمح لك بتحرير الإجابة أو استخدام قسم التعليقات.
تبين أن cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. أنا مرتبك بعض الشيء إذا جعلت Cos²4π / 10 = cos² (π-6π / 10) و cos²9π / 10 = cos² (π-π / 10) ، فسوف يتحول إلى قيمة سالبة مثل cos (180 ° -theta) = - costheta في الربع الثاني. كيف يمكنني إثبات السؤال؟
من فضلك، انظر بالأسفل. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
كيف يمكنني مقارنة نظام من المعادلات التفاضلية الجزئية من الدرجة الثانية الخطية مع وظيفتين مختلفتين داخلها لمعادلة الحرارة؟ يرجى أيض ا تقديم إشارة يمكنني ذكرها في ورقتي.
"راجع التفسير" "ربما لا يكون جوابي على هذه النقطة تمام ا ، لكنني أعرف" "حول اللون" (الأحمر) ("تحول Hopf-Cole"). "" تحول Hopf-Cole هو تحول ، وهو يخطط " "حل" اللون (الأحمر) ("معادلة البرغر") "إلى" اللون (الأزرق) ("معادلة الحرارة"). " "ربما يمكنك أن تجد الإلهام هناك."