ما هو الحد الأدنى المطلق لـ f (x) = xlnx؟

ما هو الحد الأدنى المطلق لـ f (x) = xlnx؟
Anonim

إجابة:

الحد الأدنى نقطة في # (1 / e ، -1 / e) #

تفسير:

العطاء #f (x) = x * ln x #

الحصول على المشتق الأول #f '(x) # ثم تساوي الصفر.

#f '(x) = x * (1 / x) + ln x * 1 = 0 #

# 1 + ln x = 0 #

#ln x = -1 #

# ه ^ -1 = س #

# س = 1 / ه #

حل ل # f (x) # في # x = 1 / e #

#f (x) = (1 / e) * ln (1 / e) #

# F (س) = (1 / ه) * (- 1) #

# F (س) = - 1 / ه #

لذلك النقطة # (1 / e ، -1 / e) # يقع في الربع الرابع وهو نقطة الحد الأدنى.