إجابة:
معادلة المكافئ هو
تفسير:
معادلة القطع المكافئة في شكل Vertex هي
لنفترض أن القطع المكافئ لديه قمة (4،7) ويمر أيض ا عبر النقطة (-3،8). ما هي معادلة المكافئ في شكل قمة الرأس؟
في الواقع ، هناك نوعان من القطع المكافئة (من شكل قمة الرأس) التي تلبي مواصفاتك: y = 1/49 (x- 4) ^ 2 + 7 و x = -7 (y-7) ^ 2 + 4 هناك نوعان من أشكال قمة الرأس: y = a (x- h) ^ 2 + k و x = a (yk) ^ 2 + h حيث (h، k) هي قمة الرأس ويمكن العثور على قيمة "a" باستخدام نقطة أخرى. لم نعط أي سبب لاستبعاد أحد النماذج ، وبالتالي فإننا نستبدل الرأس المعطى في كليهما: y = a (x- 4) ^ 2 + 7 و x = a (y-7) ^ 2 + 4 حل لكلتا القيمتين باستخدام النقطة (-3،8): 8 = a_1 (-3- 4) ^ 2 + 7 و -3 = a_2 (8-7) ^ 2 + 4 1 = a_1 (-7) ^ 2 و - 7 = a_2 (1) ^ 2 a_1 = 1/49 و a_2 = -7 فيما يلي المعادلتان: y = 1/49 (x- 4) ^ 2 + 7 و x = -7 (y-7) ^ 2 +4 فيما يل
معادلة القطع المكافئ هي y ^ 2 = 8x. ما هي إحداثيات قمة الرأس المكافئ؟
Vertex: (x، y) = (0،0) المعطى y ^ 2 = 8x ثم y = + - sqrt (8x) إذا كانت x> 0 فهناك قيمتان ، واحدة موجبة والأخرى سالبة ، بالنسبة لـ y. إذا كانت x = 0 فهناك قيمة واحدة لـ y (وهي 0). إذا كانت x <0 ، فلا توجد قيم حقيقية لـ y.
ما هي معادلة المكافئ مع قمة الرأس في الأصل والتركيز في (0 ، -1/32)؟
8x ^ 2 + y = 0 Vertex هو V (0، 0) والتركيز هو S (0، -1/32). يوجد Vector VS في المحور ص في الاتجاه السلبي. لذلك ، فإن محور القطع المكافئ هو من الأصل والمحور y ، في الاتجاه السلبي ، طول VS = حجم المعلمة a = 1/32. لذلك ، معادلة القطع المكافئ هي x ^ 2 = -4ay = -1 / 8y. إعادة الترتيب ، 8x ^ 2 + y = 0 ...