عندما يتم وضع كائن على بعد 8 سم من عدسة محدبة ، يتم التقاط صورة على شاشة في 4com من العدسة. الآن يتم نقل العدسة على طول محورها الرئيسي بينما يتم الحفاظ على الكائن والشاشة ثابتة. حيث يجب نقل العدسة للحصول على آخر واضح؟
كائن المسافة ومسافة الصورة تحتاج إلى أن تكون متبادلة. يتم إعطاء شكل غاوسي مشترك لمعادلة العدسة كـ 1 / "مسافة الكائن" + 1 / "مسافة الصورة" = 1 / "البعد البؤري" أو 1 / "O" + 1 / "I" = 1 / "f" إدراج قيم معينة حصلنا على 1/8 + 1/4 = 1 / f => (1 + 2) / 8 = 1 / f => f = 8 / 3cm الآن يتم نقل العدسة ، تصبح المعادلة 1 / "O" +1 / "I" = 3/8 نرى أن الحل الآخر فقط هو مسافة الكائن ويتم تبادل مسافة الصورة. وبالتالي ، إذا تم إجراء مسافة الكائن = 4 سم ، سيتم تشكيل صورة واضحة في 8 سم
عندما يتم تقسيم متعدد الحدود على (x + 2) ، فإن الباقي هو -19. عندما يتم تقسيم نفس كثير الحدود على (x-1) ، الباقي هو 2 ، كيف يمكنك تحديد الباقي عندما يتم تقسيم متعدد الحدود على (x + 2) (x-1)؟
نعلم أن f (1) = 2 و f (-2) = - 19 من نظرية Remainder Now ، أعثر الآن على ما تبقى من كثير الحدود f (x) عند القسمة على (x-1) (x + 2) الباقي سيكون شكل Ax + B ، لأنه الباقي بعد القسمة على تربيعي. يمكننا الآن مضاعفة المقسوم عليه في حاصل القسمة Q ... f (x) = Q (x-1) (x + 2) + Ax + B التالي ، أدخل 1 و -2 ل x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 حل هاتين المعادلتين ، نحصل على A = 7 و B = -5 الباقي = Ax + B = 7x-5
نهر الطريق هو 11 4/5 ميل. طول طريق البراري 14.9 ميل. ما المدة التي يستغرقها طريق بريري من طريق ريفر كدور عشري؟
يجب علينا تحويل طول نهر الطريق إلى عشري. 4/5 تساوي 0.8 لأن 4/5 = 80/100 لذلك ، طول نهر الطريق 11.8 ميل. نظر ا لأننا نريد أن نعرف كم يبلغ طول 14.9 أكثر من 11.8 ، فإننا نطرح الرقمين فقط. 14.9 - 11.8 = 3.1