إجابة:
تفسير:
لديك رقمان مجهولان ، يجب أن نذكرهما
ثم نلقي نظرة على المعلومات حول هذه المجهولات التي يتم تقديمها ، ونكتبها للحصول على صورة للموقف.
الرقم الثاني ، الذي نسميه
أين
ينص الجزء التالي من المعلومات على أن مجموع
الآن لدينا معادلتان للعمل.
لايجاد
نحن ثم الحصول عليها
الآن نحن نعرف قيمة
نأخذ المعادلة 2 ، والمكونات
محيط المثلث 29 ملم. طول الجانب الأول هو ضعف طول الجانب الثاني. طول الجانب الثالث هو 5 أكثر من طول الجانب الثاني. كيف يمكنك العثور على الأطوال الجانبية للمثلث؟
S_1 = 12 s_2 = 6 s_3 = 11 محيط المثلث هو مجموع أطوال جميع جوانبه. في هذه الحالة ، يتم إعطاء محيط 29 مم. لذلك في هذه الحالة: s_1 + s_2 + s_3 = 29 لذلك نقوم بحل لطول الجوانب ، نقوم بترجمة البيانات في المعطى إلى نموذج المعادلة. "طول الجانب الأول هو ضعف طول الجانب الثاني" ، ولحل هذه المشكلة ، نخصص متغير ا عشوائي ا إما s_1 أو s_2. على سبيل المثال ، أود أن أكون x طول الجانب الثاني لتجنب وجود كسور في معادلي. لذلك نحن نعرف أن: s_1 = 2s_2 ولكن بما أننا سمحنا s_2 أن يكون x ، فإننا نعرف الآن: s_1 = 2x s_2 = x "طول الجانب الثالث هو 5 أكثر من طول الجانب الثاني." ترجمة العبارة أعلاه إلى نموذج المعادلة ... s_3 = s_2 +
مجموع ثلاثة أرقام هو 4. إذا تم مضاعفة الرقم الأول والثالث ثلاثة أضعاف ، يكون المجموع أقل من الثاني. أربعة أكثر من الأول يضاف إلى الثالث هو اثنين أكثر من الثاني. العثور على الأرقام؟
1 = 2 ، 2 = 3 ، 3 = -1 ، أنشئ المعادلات الثلاث: Let 1st = x ، 2nd = y و 3 = z. EQ. 1: x + y + z = 4 EQ. 2: 2x + 3z + 2 = y "" => 2x - y + 3z = -2 EQ. 3: x + 4 + z -2 = y "" => x - y + z = -2 احذف المتغير y: EQ1. + EQ. 2: 3x + 4z = 2 EQ. 1 + مكافئ 3: 2x + 2z = 2 حل من أجل x عن طريق القضاء على المتغير z بضرب EQ. 1 + مكافئ 3 من -2 وإضافة إلى EQ. 1 + مكافئ 2: (-2) (EQ. 1 + EQ. 3): -4x - 4z = -4 "" 3x + 4z = 2 ul (-4x - 4z = -4) -x "" = -2 "" = > x = 2 حل من أجل z بوضع x في EQ. 2 و مكافئ. 3: مكافئ. 2 مع x: "" 4 - y + 3z = -2 "" => -y + 3z = -6 EQ.
مجموع ثلاثة أرقام هو 137. والرقم الثاني هو أربعة أكثر من ، مرتين الرقم الأول. الرقم الثالث هو خمسة أقل من ثلاثة أضعاف الرقم الأول. كيف يمكنك العثور على الأرقام الثلاثة؟
الأرقام هي 23 و 50 و 64. ابدأ بكتابة تعبير لكل من الأرقام الثلاثة. يتم تشكيلها كلها من الرقم الأول ، لذلك دعونا ندعو الرقم الأول س. دع الرقم الأول هو x والرقم الثاني هو 2x +4 والرقم الثالث هو 3x -5. قيل لنا إن مجموعهم هو 137. وهذا يعني عندما نضيفهم جميع ا ، ستكون الإجابة 137. اكتب معادلة. (x) + (2x + 4) + (3x - 5) = 137 الأقواس غير ضرورية ، فهي مدرجة من أجل الوضوح. 6x -1 = 137 6x = 138 x = 23 بمجرد أن نعرف الرقم الأول ، يمكننا حل الاثنين الآخرين من التعبيرات التي كتبناها في البداية. 2x + 4 = 2 xx23 +4 = 50 3x - 5 = 3xx23 -5 = 64 Check: 23 +50 +64 = 137